
 

  
 Abstract – The goal of the North Eastern Pacific Time-Series 
Undersea Networked Experiment (NEPTUNE) is to construct a 
cabled observatory on the floor of the Pacific Ocean, 
encompassing the Juan de Fuca Tectonic Plate.  The power 
system associated with the proposed observatory is unlike 
conventional terrestrial power systems in many ways due to the 
unique operating conditions of cabled observatories.  The unique 
operating conditions of the system require hardware and 
software applications that are not found in terrestrial power 
systems.  This paper builds upon earlier work and describes a 
method for topology error identification in the NEPTUNE system 
that utilizes an Artificial Neural Network (ANN) to determine 
single contingency topology errors. 
 
  Index Terms–DC power systems, Neural networks, State 
Estimation, Topology, Underwater equipment, Underwater 
technology 
 

I. Introduction 
 

he topology of a power system is determined by the 
positions of the breakers and switches  as well as the 

cables that interconnect them.  In a conventional terrestrial 
power system the position of breakers and switches are 
generally indicated either remotely or by a manual method.  
Under ocean power system are severely limited in their ability 
to determine the position of breakers and switches due to 
space limitations imposed by hardware in addition to the 
extreme remote locations of the hardware.  The uncertainty in 
the present topology of a power system can severely limit the 
ability of the energy management system to function properly. 
 In the past fifteen years artificial neural networks (ANNs) 
have begun to be utilized through out the power industry.  
ANNs have found applications in areas such as load 
forecasting, power system stabilization, and hardware 
modeling [1-3].  One of the great advantages of an ANN is 
that when it is properly trained it can quickly generate data,  
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using simple algebraic manipulation, which would normally 
require the computation of complicated non-linear equation.  
This drastic reduction in required computation lends ANNs to 
applications requiring real-time functionality. 

The main contribution of this paper is the derivation and 
implementation of an Artificial Neural Network for single 
contingency topology identification in a highly interconnected 
under ocean DC system with a high degree of unobservability.   
  

 II. Background 
 

  In a conventional terrestrial power system there are 
redundant sources of information to determine the position of 
breakers; breaker auxiliary contacts, measurements of current 
through the breaker, measurements of voltage across a 
breaker, power flow along a line, visual inspection, etc.  In the 
absence of direct indications such as auxiliary contacts 
conventional topology identification methods make use of 
indirect measurements, such as voltage differences and line 
flows, to perform the combined function of state estimation 
and topology identification [4-7]. The lack of comparable 
indications, direct or indirect, in the NEPTUNE systems 
requires new methods of topology identification to deal with 
the high degree of unobservability of the system. 
 In addition to a high degree of unobservability, the 
NEPTUNE system also contains non-linear elements, zener 
diodes, in series with the lines that transmit the power, as well 
as constant power loads at the science nodes.  A method of 
topology identification has been developed that will account 
for the non-linearities in the system as well as the 
unobservability, but it has the undesirable characteristic of 
needing to vary the systems source voltages [8].  The problem 
with the developed method is that operational constraints may 
prohibit the varying of the systems source voltages at certain 
times. 
 In the absence of an effective topology identification 
technique that does not require the varying of the systems 
source voltage, it is proposed to attempt to use an ANN to 
determine the topology of the system assuming that there is 
no more than a single contingency.  In this situation a 
topology contingency refers to a single line being out of 
service.   A single line out of serve indicates that two breakers 
are out of position, one at either end of the line. 
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Fig. 1.  NEPTUNE system 

 
III. System Description 

 
 The proposed system is a highly interconnected DC system 
with a combination of series and parallel loads connected by a 
3000 km cabled sub-sea network with two shore landings, 
intended to supply power at specified locations, nodes, Fig. 1. 

Each of the forty-six node locations, a tentative number of 
points, shown in Fig. 1 will contain a node branching unit, 
BU, which will branch the main cable, Fig. 2.  The cable 
coming off of the BU may be several km long and will supply 
power and communications to the science nodes.  

 
Branching Unit 

Backbone Cable Backbone Cable

DC/DC Converters
10kV to 400V

Spur Cable: Approx. 3-5 Km Science Node  

Fig. 2.  Branching Unit (BU) to science node connection 

 At the science nodes voltage and currents, as well as load 
information, are available to the system operator.  While the 
communications path for this data passes through the BUs, 
the communications system does not interface with this 
component of the system.  For this reason there are no 
indications, direct or indirect, of the status of the power 
system breakers in the BUs.   

 
IV. Basis for use of a Neural Network 

 
In order to properly train a neural network there must be a 

correlation between the input values and the output values.  
For the system of Fig. 1 the inputs will be voltage, current, 
and load at each of the science nodes and the outputs will be 
the binary position of 64 system breakers.    

The correlation between the inputs and the status of the 
breakers can be found in the sensitivities of the residuals 
calculated by a weighted least squares state estimation 
algorithm [8].    

Using the voltage and current measurements made at the 
science nodes, in conjunction with the assumed topology of 
the system, the voltages at the BU’s can be calculated using a 
weighted least squares estimation: 
 

                         ( ) 111 −−−= HRHZRHx TmeasTest                      (1) 

 
Where:   

 estx     : column vector of BU voltages 
  H      : matrix of assumed topology 

 1−R     : diagonal matrix of measurement variances 

 measZ  : column vector of measured values 
 
 In order to determine the level of measurement error 
present in the system, a comparison is made between the 
measured values and the measured values as calculated from 
the estimated BU voltages; the difference is indicated by the 
calculated residual.   
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Where: 
 

   T : ( ) 11 −− HRHH TT  
       n : number of measured quantities 

 
Due to the multiple source of error in the system, the residual alone 

is not a valid indication of the accuracy of the assumed system 
topology.  For this reason the sensitivity of the calculated residual 
with respect to the system source voltage, VSS, is examined. 
 When the assumed topology is the correct topology, the 
residual will vary in a roughly linear manner that can be 
calculated.  If the assumed topology is incorrect then the 
residual will vary in a strongly non-linear manner [8].  
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Where: 
 

SSV

R

∂
∂

 : sensitivity of the residual  

kT        : kth row of the assumed topology matrix,T ,  from (2) 

  n        : number of science nodes in the system 
 
In order to calculate (3) it is necessary to vary the system 

source voltages, an action that is not desirable and potentially 
impossible due to system constraints.  In an attempt to 
determine the topology of the system without varying the 
source voltage, an ANN will be used to detect the nearly 
linear, or highly non-linear, relationship between the residual 
and the source voltage without direct calculation of  (3).   

 
V. Neural Network Structure and Training 

 
 Artificial neural networks are structured, in a fashion, 

after elements of the human nervous system [9].  The 
advantage to this structure is that it allows for the calculation 
of large non-linear problems with relatively simple 
computations, once the network has been trained.   

The major structural elements of an artificial neural 
network are the neurons and their interconnecting weights, 
Fig. 3. 
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Fig. 3.  Three Layer Neural Network Structure  

 

 

 

 The ANN of Fig. 3 is governed by (4-7):  
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Where: 
λ : Gain that determines non-linearity of the sigmoid 
t   : The output associated with the inputs from the training  
       data 

 
 The method used to train the ANN for this work is the 

well established method of back error propagation, where the 
weights of the k+1 iteration are calculated based on the value 
of the kth iteration (8) and (9).    
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Where: 
( )k

ijV  : Weight between hidden neuron i and output neuron j 

( )k
ijW : Weight between input neuron i and hidden neuron j 

( )kη    : Step size of the iteration 
( )kE   : Difference between the output neuron value and the  

              output value of the training data 
 

 The sensitivity of the error ( )kE  with respect to the 

weights, 
( )k

ijV  and
( )k

ijW , is calculated at each iteration of 

the training processes.  The general forms are found through 
the use of the chain rule: 
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As the number of iterations, epochs, increases, the RMS 

error, E(k), should converge.  Once the error has converged to 
a satisfactory value, as determined by the desired level of 
accuracy, the system can then be considered trained.   

 
 



 

V. Training Data  
 

 For topology identification of the system shown in Fig. 1, 
training data will be generated using a Newton-Raphson 
power flow scheme.  A power flow algorithm has been 
designed that will allow for the non-linear zener diodes that 
are in the lines of the system to be taken into account.  In 
addition, a Gaussian error of .1% will be introduced into the 
voltage and currents calculated by the power flow in order to 
simulated measurements error.  A Gaussian error of .1% will 
also be introduced into the load values to reflect 
unknown/unexpected system loads. 
 The inputs of the ANN will be the 46 voltages and 46 
currents measured at the science nodes in addition to the loads 
at the 46 nodes.  The output will be the position of 64 
breakers, which will determine the topology of the system.  
The outputs will be binary with 1 indicating a closed breaker 
and 0 indicating an open breaker. 
 From Fig.1 there are three classifications that each of the 
cable sections fall under: 
 

1) Radial, connected to shore 
2) Radial, not connected to shore 
3) Networked 

 
 A topology error can easily be identified if it is in a cable 
section that falls within the first 2 classifications.  In the first 
case a simple adjustment of the shore station voltage will only 
affect the science nodes between the topology error and the 
shore station.  In the second case all of the science nodes 
down stream of the topology error will be disconnected from 
the system.  It is only topology errors within the networked 
portion of the system that will be identified using the ANN. 
 Within the networked potion of the system there are 37 
cable sections that could potentially become disconnected.  
Including the case where all of the breakers are closed, there 
are 38 potential topologies that must be examined for a 
complete single contingency analysis.  For each of the 38 
potential topologies 200 power flow calculations are 
performed with varying system loads and random 
measurements errors in order to create the training data.  The 
order in which the training data is presented to the ANN was 
randomized in order to prevent the possibility of the ANN 
memorizing the data instead of training properly. 
 

VI. Results 
 
 The ANN that was used to obtain the results of Table 1 
consisted of 138 input neurons, 20 hidden neurons in a single 
layer, and 64 output neurons.  Initially the network was 
trained with the previously mentioned 7600 test patterns for 
1000 epochs with a single line out of service.  The out of 
service line is represented by the open state of breakers 44 
and 45, while all other breakers are in the closed state.  The 
raw results of the ANN are shown in Table 1. 
 

Table 1: Typical ANN outputs (1-64), for 1000 epochs 

1 1.00000 23 1.00000 45 0.000435 
2 1.00000 24 1.00000 46 0.996269 
3 1.00000 25 0.999999 47 0.999738 
4 1.00000 26 1.00000 48 0.999996 
5 1.00000 27 1.00000 49 1.00000 
6 1.00000 28 1.00000 50 1.00000 
7 0.999986 29 1.00000 51 0.999966 
8 1.00000 30 1.00000 52 1.00000 
9 1.00000 31 1.00000 53 1.00000 

10 1.00000 32 1.00000 54 1.00000 
11 1.00000 33 0.999974 55 1.00000 
12 1.00000 34 1.00000 56 0.999473 
13 1.00000 35 1.00000 57 1.00000 
14 1.00000 36 1.00000 58 1.00000 
15 1.00000 37 1.00000 59 1.00000 
16 1.00000 38 1.00000 60 1.00000 
17 1.00000 39 1.00000 61 1.00000 
18 0.994556 40 0.999257 62 1.00000 
19 0.999561 41 0.997703 63 1.00000 
20 0.999976 42 1.00000 64 1.00000 
21 1.00000 43 0.999964     
22 0.999998 44 0.008322     

 
 From Table 1 it is clear that the output values are not the 
ideal binary values, 0 and 1, but instead vary by some small 
amount.  Fortunately the variation from the ideal values is 
small enough that the breaker positions can be determined by 
using threshold values: 
 
                      ⇒> 99.value  Breaker is closed 
                                                                                             (12) 
                      ⇒< 01.value  Breaker is open 
 
 Using the threshold values of (12) allows for clear 
discrimination between the two possible breaker positions, 
open or closed.  Table 2 shows the data from Table 1 after the 
threshold values have been applied in post processing.  The 
open state of breaker 44 and 45, output 44 and 45 of the 
ANN, are clearly distinguished from the closed state of the 
rest of the system breakers.  The identification of the 
improper position of the two breakers gives the operation a 
clear indication of the topology error 
 The values in Table 1 and 2 are typical of the values that 
the ANN gives for a number of different load and topology 
configurations, as such the threshold values of (12) as valid 
for all possible single contingency topology errors for the 
system of Fig. 1. 

 

 
 



 

Table 2: ANN outputs after threshold values 

1 closed 23 closed 45 open 
2 closed 24 closed 46 closed 

3 closed 25 closed 47 closed 

4 closed 26 closed 48 closed 

5 closed 27 closed 49 closed 

6 closed 28 closed 50 closed 

7 closed 29 closed 51 closed 

8 closed 30 closed 52 closed 

9 closed 31 closed 53 closed 

10 closed 32 closed 54 closed 

11 closed 33 closed 55 closed 

12 closed 34 closed 56 closed 

13 closed 35 closed 57 closed 

14 closed 36 closed 58 closed 

15 closed 37 closed 59 closed 

16 closed 38 closed 60 closed 

17 closed 39 closed 61 closed 

18 closed 40 closed 62 closed 

19 closed 41 closed 63 closed 

20 closed 42 closed 64 closed 

21 closed 43 closed     
22 closed 44 open     

 
 It is also possible to train the system for more than 1000 
epochs in order to gain greater discrimination between the two 
possible breaker states.  The need for further discrimination is 
not necessary for the system in Fig. 1 but may be necessary 
for other systems.  For this reason the training results beyond 
1000 epochs will be examined. 
 As can be seen from Fig. 4 the ANN output value for 
breaker 44, an open breaker, continues to asymptotically 
approach 0 as the ANN is trained for a greater number of 
epochs.  Conversely, Fig. 5 shows that the ANN output value 
for breaker 41, a closed breaker, continues to asymptotically 
approach 1 as the ANN is trained for a greater number of 
epochs.  Some ANN outputs such as 42, from Table 1, 
converge to their correct value, 1 in the case of output 42, 
after only a few hundred epochs.  
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Fig.  4.  Training results up to 300000 epochs, open status 
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Fig.  5. Training results up to 300000 epochs, closed status 

 
 The level of training required is dependent on the desired 
level of discrimination between the two breaker states.  If the 
training is allowed to continue for too long there is the 
possibility of the ANN memorizing the data instead of 
training.   This was prevented from occurring in the data 
presented in Fig. 4 and Fig. 5 by randomly varying the order 
of the test patterns in the training process as well as verifying 
the results against patterns not included in the 7600 training 
patterns.  

 
VII. Conclusions  

 
This paper represents the continuation of work that has 

been in progress for over two years. The major contribution of 
this paper is that it outlines a method of topology 
identification utilizing an artificial neural network that is 
capable of identifying single contingency topology errors in a 
highly interconnected direct current system.  The results show 
that for the system of Fig. 1, an ANN is able to determine 
single contingency topology errors with a high degree of 
accuracy.  This is accomplished in the absence of any direct 
indication of the breaker position or any indirect indications 
such as current through the breaker, one of which is required 
for any of the conventional topology identification methods. 

The primary advantage of the ANN method is that it allows 
for the voltage residual relationship of (3) to be exploited 
without having to directly calculate (3).  After the time 
required to perform the initial training of the network, the 
actual calculations time required to determine the topology of 
the system is much lower than if (3) had been directly 
calculated for each potential topology.  

The results have been confirmed for single line outages that 
represent the single contingency cases.  Multiple contingency 
cases, more than one line out of service, have not yet been 
investigated but work in this area is planned.   

While the use of an ANN has only been tested on the 
proposed NEPTUNE system of Fig. 1 the methodology used 
is equally valid for terrestrial power systems.   Expansion of 
this method to alternating current terrestrial power system will 
be the next stage of this work. 
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